
Modeling Relationships Using Graph State Variables1

Matthew B. Bennett and Robert D. Rasmussen
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

(818) 393-0836
Matthew.B.Bennett@jpl.nasa.gov and Robert.D.Rasmussen@jpl.nasa.gov

1 0-7803-7321-X/01/$10.00 © 2002 IEEE

Abstract—The Mission Data System is a unified flight,
ground, simulation, and test software system for space
missions. Currently, its first application will be the Mars
Smart Lander mission, where common MDS software
frameworks will be adapted for use in interplanetary cruise,
entry-descent-landing, and rover operations. A key
architectural theme of MDS is explicit modeling of states.
This provides a sound foundation for estimation, control,
and data analysis. Certain essential states are relative rather
than absolute. Relative states are defined in graph state
variables (GSVs) as relationships between nodes in a graph.
GSVs are a general graph-based state representation that (1)
derives a state’s value by combining relationships, (2)
produces different results for different derivation paths, (3)
handles changes to topology and relationships between
nodes, and (4) represents dependencies between
relationships (e.g. correlations). This paper shows example
GSV representations for spacecraft orientation, location,
trajectories, dynamics, and kinematics.

 TABLE OF CONTENTS

 1. INTRODUCTION
 2. MDS OVERVIEW
 3. STATE
 4. RELATIVE STATE REPRESENTATION TODAY
 5. MDS GRAPH STATE VARIABLES
 6. MARS EDL EXAMPLE
 7. SYSTEMS ENGINEERING OF RELATIVE STATES
 8. CONCLUSION
 9. ACKNOWLEDGEMENTS

 1. INTRODUCTION
Future space missions are becoming more challenging and
complex. Flybys of planets are now being followed with
landers and in-situ mobile vehicles. Mobile vehicles have
demanding objectives to achieve scientific objectives
without the intervention of ground controllers. Obstacles
must be avoided. Chance objects of interest need to be
efficiently identified and investigated on the way to
achieving specific ground-directed mission objectives.
Timely communications with Earth may be impractical
because of the long distances involved, or because of

blocked communications. Upcoming flyby missions are also
becoming more challenging. The spacecraft must
autonomously compensate for uncertainties in small body
trajectories that cannot be anticipated by their human
operators on Earth. Missions that previously could be
planned in advance as detailed sequences of commands,
now must be flexible to handle uncertainties in time,
trajectory, and science opportunities. Graph state variables
provide a way for spacecraft to represent new targets and
obstacles relative to known locations. Ground-based
operators need not be in the loop; additions can be made in a
timely autonomous fashion in response to events in the
environment.

The availability of more capable and affordable computing
power enables the above mission objectives. But this also
puts more responsibility on software to implement more
advanced capabilities. Further, spacecraft technology
advances now make it affordable to launch many more
spacecraft than in the past. We can now launch missions that
are comprised of a fleet of cooperating spacecraft, putting
further demands on spacecraft operations. Graph state
variables can represent the trajectories of spacecraft fleets
and the communication networks by which they coordinate
their operations. Mission operations for this next wave of
spacecraft will be prohibitively expensive if we continue to
orchestrate every detail of spacecraft direction using human-
intensive sequencing tools and processes. Clearly, there is a
need for more spacecraft autonomy in the next generation of
spacecraft to simplify human-spacecraft interactions. Graph
state variables in concert with MDS goal-directed behavior
will go a long way towards achieving autonomous fleet
operations.

Software costs will limit the potential for taking advantage
of these new opportunities in spacecraft autonomy.
Currently, spacecraft software is built starting with inherited
capabilities, standards, and operational paradigms from
previous missions. Much, however, is re-written and
validated because many requirements about the spacecraft
and mission is hidden within the software code without an
abstraction that facilitates reuse. Even when inherited
software is well documented, the requirements and
assumptions that went into its design are so interwoven into

its implementation that reuse requires significant rework or
discarding.

The Mission Data System (MDS) is a unified flight, ground,
and test architecture under development at the Jet
Propulsion Laboratory. It will provide a set of reusable
software frameworks, inspectable models, and a
methodology and language to identify and express
requirements in their terms. This paper describes graph state
variables, a specific MDS software framework designed for
modeling relative states.

MDS has a number of general architectural patterns for
models. One pattern is explicitly representing state as a
function of time with a specified uncertainty. Many states
are absolute (e.g. volume, pressure, current) and can be
modeled as scalars with units. Other states are relative and
are defined with respect to a reference point (e.g. voltage
with respect to a ground, location with respect to an origin,
orientation with respect to a coordinate frame). Graph state
variables represent such reference points as nodes in a
graph, and a relative states as edges between pairs of nodes
in the graph. Graph state variables link and combine relative
states along paths in graphs. A graph rather than a tree

topology allows for alternate relative state derivations that
can depend on mission envionment. Mission requirements
on relative states are modeled explicitly in terms of graph
state variable architectural elements. The implemented
elements are easily inspected and modified from mission to
mission. Further, graph state variables provide a common
architectural framework for representing relative states on
both ground and flight software systems. Graph state
variables and the entire MDS architecture will enable future
mission software specialists to concentrate on building new
autonomous capabilities, rather than on re-inventing the
past.

 2. MDS OVERVIEW
The Mission Data System guiding belief is that software
plays a central and increasingly important system role that
must be reconciled with the overall systems engineering
approach adopted by a project. Both software and systems
engineering apply across all parts of a project and to all
elements of the environment affecting the mission.
Therefore, it is essential that systems and software share a
common approach to defining, describing, developing,
testing, operating, and visualizing what systems do. To

Figure 1. This diagram emphasizes several MDS architectural themes: the central role of state knowledge and models,
goal-directed operation, separation of state determination from control, and closed-loop control. Graph state variables
manifest the central role of state knowledge and models. Graph state variables represent relative states and model their
composition into combined states.

realize this belief, MDS is founded on a set of architectural
themes that shape the design [1]. These themes are
emphasized because they have a broad impact on the design
and they differ from earlier spacecraft engineering practices.
Key themes that are manifested by graph state variables are
described below.

State and Models Are Central

MDS is a state-based architecture, where state is a
representation of a momentary condition of an evolving
system and models describe how states evolve and are
affected (see figure 1). All clients of state access it in a
uniform way through state variables, as opposed to a
program’s local variables. Figure 2 illustrates the clients of
state.

A state timeline describes what a state’s value is as a
function of time. State timelines are a complete record of the
system’s history, expectations, and plans. As well as
providing the fundamental coordinating mechanism on the
spacecraft, state timelines are also the objects of a uniform
mechanism of information exchange between flight and
ground.

Graph state variables are used to represent relative states.
GSVs model relative states as directed edges between pairs
of nodes in a graph. Each edge represents a relative state as
transitive relationship timeline between its two nodes. A
graph state variable can derive a relative state by composing
the relative states along a path in its graph.

Explicit Use of Models

MDS tries to express domain knowledge explicitly in
inspectable models rather than implicitly in program logic.
The models separate the application-specific knowledge
from the reusable logic that applies domain knowledge to
solve a problem. A model built for a specific mission may
also be reused on future projects. The task of customizing
MDS for a mission, then, becomes largely a task of defining
and validating new or reused models.

Graph state variables provide a reusable framework for
modeling relative states as nodes and edges in a graph. The
type of a graph state variable is defined by the type of
relative state that appears on its edges. The type is a
transitive relationship that explicitly models how to
represent a particular kind of relative state for a particular
domain. The type also models how relative states are
composed together to form derived relative states. The
composition models are abstracted in terms of relationship
operators for concatenation and inversion. Derived
relationships are described in more detail in section 5.

A graph state variable type that models spacecraft attitude
and trajectory is an example of a model that can be reused
by subsequent missions. In this case, the relationship type is
a combined translation and rotation that has applications in
the navigation, guidance and control, and robotics domains.

This kind of relationship is called a six degree of freedom
transformation and is discussed further below and in section
5.

Join Navigation, Attitude Control, and Robotics

MDS builds navigation, attitude control, and robotics
applications from a common mathematical base. They have
been built in the past as separate development efforts
because they operate over different timescales or in different
environments, or because their dynamics don’t greatly affect
each other. When they need to share information, in cases
such as maneuver execution or pointing towards celestial
bodies, the interfaces have been ad hoc and conversions are
needed between different forms of knowledge
representation.

In general, elements that are separately engineered may
work by themselves, but often fail to work together.
Separately engineered applications set the stage for bugs to
slip through the cracks simply because of the large number
of possible interactions. This is a major source of
unreliability. Future missions will have greater needs to
share more information between disciplines that have been
separately engineered in the past. For example, rovers will
need to navigate to targets identified by orbiting mapping
spacecraft and will need to point antennas to Earth or
orbiting relay spacecraft. Docking missions and missions to
orbit small planetary bodies will require tight coupling
between attitude control and navigation. The MDS solution
is to build subsystems from common architectural elements,
rather than the other way around. In this way, the
interactions are more reliable by using common interaction
management mechanisms and consistent knowledge
representations for orbit dynamics, attitude dynamics, and
kinematics.

Figure 2. System state is the MDS architectural
clearinghouse for information processing.

Graph state variables that model six degree of freedom
transformations provide a common mathematical base and
modeling mechanism for location and attitude relative states
needed in the domains of navigation, guidance and control,
and robotics. Six degree of freedom graph state variables are
discussed further in section 5.

 3. STATE
State Variables

The MDS architectural element for representing state is the
state variable [2]. All users of state knowledge get it from
state variables. An estimator weighs in evidence from
measurements, commands, and other states to calculate an
estimate for a state’s value. Only one version of a state’s
estimate is represented, and it’s stored in a single state
variable to discourage potentially inconsistent private
estimations. A remote system, however, may need a copy of
a state estimated on a different system. In this case, the
estimating system sends new estimates to the remote
system. The remote system accesses the copy, just as the
local system accesses the original, except it is not allowed to
change the copy. A state variable that contains such an
immutable copy is called a proxy state variable. A state
variable that is updated locally with an estimator is called a
basis state variable.

Some states are computed simply as functions of other
states (i.e. their estimations do not incorporate
measurements or commands). Such states are called derived
state variables and the computations of their values are
called derivations. This concept comes in handy later during
the description of graph state variables.

A state estimate is the system’s best guess of the “true”
physical state. MDS recognizes that state estimates are not
“truth” and requires that all state estimates include an
assessment of uncertainty.

MDS stores the state timeline for a basis or proxy state
variable as functions of time in the state variable’s value
history. Because a state’s value history implies its
derivatives, MDS implicitly represents a state’s derivatives
in its value histories. If an application needs an explicit
representation of a state’s derivative, then MDS requires
that the derivative be encapsulated and consistent with its
value history.

Absolute and Relative States

In this section, we describe the requirements on graph state
variables for representing relative states. Some states are
absolute in nature and are independent from points of
reference. Some examples of absolute states are

 whether a pyrotechnic device is fired or not,
 whether a parachute is stowed or deployed or

separated,

 whether a cable is cut or not,
 whether a switch is open or closed,
 whether an instrument is powered on or off,
 the current flowing through a heater, and
 propellant volume and pressure

Certain key spacecraft states, however, represent relative
rather than absolute quantities. Examples of relative states
are

 a spacecraft basebody orientation relative to the
Earth Mean Equator 2000 coordinate frame,

 the location of a spacecraft relative to the Earth,
 the direction to the Sun relative to a spacecraft

basebody coordinate frame,
 the location of a rock relative to a rover arm end

effector,
 the voltage of an instrument’s high-voltage sensor

grid relative to a spacecraft chassis,
 the output power of a transmitter amplifier relative

to its input signal,
 the connectivity and data rate of a spacecraft

instrument relative to an onboard communications
bus,

 the connectivity and data rate of a lander relative to
an orbiting communications satellite or an Earth
ground station, and

 the heat transfer of an infrared detector relative to
its radiator.

MDS graph state variables were developed to recognize the
requirement for explicitly representing relative states with
respect to points of reference. For example, one cannot
understand a 3-dimensional vector representing a
spacecraft’s location without defining an origin (e.g. the
Earth, Sun, or Mars barycenter) and a coordinate system
(e.g. Earth Mean Equator 2000). Similarly, a quaternion
representing a spacecraft’s orientation has no physical
meaning without also specifying a reference coordinate
system.

It is always possible to treat such relative states as absolute
by adopting a standard reference for all objects and
specifying everything relative to that. This, however, is
usually inconvenient. Core relationships are obscured since
they are not explicitly modeled. Further, such absolute
representations can be numerically imprecise. This makes
the software less understandable, less reusable, and less
reliable.

Graph state variables are required to be able to derive
relative states from others. For example, a voltage for a grid
in an instrument is measured with respect to the
instrument’s chassis voltage. The instrument chassis voltage
is offset from the spacecraft ground. The grid’s voltage with
respect to the spacecraft ground, therefore, is the sum of the
two voltages. This also demonstrates the requirement for
graph state variables to allow a point of reference to be used
in the definition of more than one relative state. In the above

example, the instrument’s chassis voltage reference is used
to define the grid voltage as well as the chassis’s voltage
offset relative to the spacecraft ground.

A rover arm example demonstrates more compelling
requirements for deriving relative states (see figure 3). A
rover needs to autonomously control the relationship (d),
the relative location of a rover’s end effector (D) with
respect to a rock on the Mars surface (E). This relative state
may be derived from a combination of relative states for
location. Some states are estimated from measurements of
arm joint angles: the effector with respect to the forearm (D
w.r.t. C), the forearm with respect to the upper arm (C w.r.t.
B), and the upper arm with respect to the rover body (B
w.r.t. A). The rover body location with respect to the rock
(A w.r.t. E), which may be estimated using binocular vision
algorithms, is also a constituent of the derivation. The
relative state for the end effector’s location w.r.t. rock may
be derived as D->C->B->A->E. When the end effector is
close to the rock, the effector’s proximity sensor may
provide a more accurate estimate of the rock’s location. In
this case, the directly measured estimate of the relative state
D->E may be used instead of the longer derivation above.
This demonstrates that graph state variables are required to
be able to represent multiple derivations for the same
relative state, and to be able to select between them. The
selection between allowable derivations may be based on a
property of the derivations, such as their accuracy.

A rover traversal example demonstrates that graph state
variables are required to accommodate the addition of new
relative states and points of reference. A rover’s location
state relative to a landing site may be derived from a
sequence of location offsets between waypoint locations.
Each offset between two waypoints is a relative location
state, and each waypoint is a point of reference. New
waypoints are identified as a new target for each traversal
the rover makes across the Mars surface. New relative
location states may be created as each new waypoint is
identified. Each new relative location state is the location of
the current waypoint with respect to the previous waypoint.
The derivation for the rover’s location with respect to the
landing site is computed from the sequence of relative
location states going back to the landing site.

A similar example is an interplanetary spacecraft that
encounters scientific targets of opportunities during its
mission. The locations of new targets are relative states that
may represent the trajectory of a planetary object relative to
another (e.g. a new comet relative to the Sun’s barycenter,
or a new moon relative to a planet’s barycenter). The
locations of such unplanned targets need to be added to the
spacecraft’s knowledge. Further, to point at a new target, the
spacecraft attitude control system needs to compose the
relative location of the new target with other previously
known location states to derive the location of the object
with respect to the spacecraft.

In addition to being a point of reference for multiple relative
states of the same kind, graph state variables are required to
allow a node to be a point of reference for more than one
type of relative state. For example, a spacecraft gyro may be
a point of reference for describing its location and
orientation as a relative state. It may also be a point of
reference for its voltage relative state. Finally, it may also be
a point of reference for its connectivity relative state on the
onboard communication network.

The examples above demonstrate requirements on graph
state variables to define, organize, and derive relative states
that represent relationships between points of reference.

 4. RELATIVE STATE REPRESENTATION TODAY
Today’s spacecraft represent relative states usually in an
implicit rather than explicit manner. For example, simple
relative states such as voltages are generally implicitly
understood to be offsets with respect to the spacecraft
chassis ground. Also lacking in current space applications is
a systematic representation of uncertainty. Some detailed
examples from real spacecraft applications follow to
demonstrate other areas of improvement that are addressed
by graph state variables.

Spacecraft attitude control systems typically estimate the
spacecraft orientation relative state using onboard sensors
that measure spacecraft rotation rates and directions to stars,
the sun or nearby planetary bodies. Spacecraft orientation
and directions to solar system bodies and stars are implicitly
defined with respect to a coordinate frame reference (e.g. an
inertial coordinate frame such as EME 2000). In many
missions, there is no explicit representation in the onboard
attitude control system of the spacecraft trajectory, or the
orbits and rotations of the planetary bodies. When target
directions are needed, the ground navigation system
computes orbits and rotations using detailed ground based
models and converts them into simplified propagation
models. These models approximate the directions in the
coordinate frame that the spacecraft implicitly uses and are
uplinked to the onboard attitude control system. It in turn

Figure 3. Rover arm example.

d

A

B
C

D

E

uses them to produce directions at needed times for
orienting the spacecraft, pointing its antennas and
instruments, and avoiding harmful sun rays.

The pointing system model that resides in the Cassini
spacecraft attitude control system improves on this situation
[3]. It explicitly represents the orbits of planetary bodies, the
spacecraft trajectory, and orientations between coordinate
frames. Translations between planetary bodies and the
spacecraft, and rotations between coordinate frames are
organized as edges in a tree. Each edge either represents a
relative position or relative rotation between nodes. The
relative positions are vectors between two location nodes
(e.g. a planetary body and the Cassini spacecraft.) The
relative rotations are quaternions between two coordinate
frame nodes (e.g. EME 2000 and the spacecraft local
coordinate frame). Some nodes are used as reference points
for both locations and coordinate frames. The direction of a
planetary body relative to the spacecraft is computed by first
finding the path in the tree between the body and spacecraft.
The direction is computed by adding the sequence of vectors
and applying the rotations along the path. A found path can
be reused for computing a direction at a later time without
having to search the tree. The onboard pointing system
propagates the edge information as functions of time. The
relative locations in the tree edges are uplinked conic or
polynomial functions, and the relative rotations in the tree
edges are linear functions using constant rotation rates.
These functions and rates are commanded by the ground and
are computed from more detailed ground based navigation
models.

JPL’s Deep Space 1 mission has an onboard navigation
application called AutoNav that also contains a model of the
spacecraft trajectory; however, it can autonomously update
the model of the trajectory using asteroid sightings.
AutoNav explicitly represents and propagates trajectory and
orbit models within the navigation software, but in a form
that is not directly understood by attitude control. Attitude
control queries AutoNav for a direction to a planetary body,
and AutoNav returns a direction that is implicitly in the
Earth Mean Equator 2000 coordinate frame. Attitude control
rotates this vector into the spacecraft coordinate frame using
its estimate of the spacecraft’s attitude. AutoNav computes
the direction for specific time by evaluating a polynomial
function. When the flyby geometry changes too fast for
repeated AutoNav queries, AutoNav provides attitude
control with a first order approximation of the dynamics of
the changing direction (an initial vector and a velocity
vector). In this case, attitude control rather than AutoNav
propagates the direction. AutoNav receives models of
planetary orbits and spacecraft trajectory from the ground in
the form of ephemeris files containing the polynomial
coefficients. The ground software creates these by reducing
a yet more accurate orbit representation in the ground
navigation system. These more detailed ground
representations are composed of sets of trajectory,
ephemeris, and orientation files that represent relative
location and orientation states. These relative locations and

orientations are defined in terms of a set of coordinate
frames and fixed locations corresponding to the spacecraft
and planetary bodies. The relations are organized using a
tree topology, where each coordinate frame or location is
identified as a node in a tree. Relative translations and
rotations are organized as edges between the nodes in two
trees. One tree contains all the translations and another
contains all the rotations. These translations and rotations
can be composed to derive new relative states by following
paths within the trees.

The Mars Exploration Rover is planning to use a set of
frames for translating between the current rover location on
the surface, its previous Mars surface positions, and its next
target location. The frames also represent the rover’s
orientation with respect to the Mars surface. The rover’s
arm also has a system for representing the relative states
between its elements and science targets.

Common to these applications is the observation that only a
single derivation is allowed because of the use of tree
topology to represent relationships. In addition, there may
not be a systematic representation for the same relative
states shared between various mission applications in the
same or neighboring system. Further there is no explicit
representation of uncertainty in the applications’ software
architecture. MDS graph state variables provide the same
functionality as these applications while also overcoming
their shortcomings.

 5. MDS GRAPH STATE VARIABLES
MDS graph state variables (GSVs) provide a general graph-
based state representation for expressing relative states and
their uncertainties in an explicit fashion. A summary
definition of graph state variables is described below and
explained further in following subsections.

Definitions

The following is a summary definition of GSVs. A node
within a graph state variable names point of reference. A
relationship within a graph state variable is a relative state
between two nodes. Relationships have uncertainty and
direction and relationships are transitive and invertible. A
relationship’s direction starts at its “from” node and ends at
its “to” node. A direct relationship within a graph state
variable is abstracted as an edge between two nodes, where
the edge references a state variable that holds or derives the
value and uncertainty of the relationship between the two
nodes. The collection of edges and nodes in a graph state
variable form a graph. A path within a graph state variable
is a sequence of nodes, where adjacent nodes in the
sequence must have an edge between them in the graph, and
no two adjacent pairs of nodes can be repeated. A derived
relationship within a graph state variable is a relationship
computed by concatenating the relationships along a path
that has 3 or more nodes. A derivation is cached path that a
graph state variable can re-evaluate to compute a derived
relationship. There are three kinds of graph state variables:

basis, proxy, and composite. A basis graph state variable is
comprised of direct relationships that are computed from
basis or derived state variables. A proxy state variable is
comprised of direct relationships that are computed from
proxy state variables. A composite graph state variable is
comprised of graph state variables that are connected by
sharing one or more nodes. Dependencies represent
correlations of knowledge between direct relationships in a
graph state variable and are stored in a dependency state
variable. The Unified Modeling Language diagram in figure
4 depicts these definitions as architectural elements within
the context of MDS estimators.

Nodes and Direct Relationships

A graph state variable knows about a set of reference points,
called nodes. Each node in a graph state variable has at least
one direct relationship with another node in the same GSV.
Each direct relationship is a relative state with an
uncertainty and is abstracted as a directed edge between two
nodes in the graph state variable’s graph. A direct
relationship’s direction starts at its “from” node and ends at
its “to” node. The set of nodes and edges in a graph state
variable comprise a graph state variable’s graph.

A graph state variable only knows about direct relationships
of a certain type. For example, a voltage graph state variable
only knows about relative voltage states between its nodes.
Other types of graph state variables may be for
telecommunications gain relationships, network
connectivity relationships, or location or rotation
relationships. If a node is used as a point of reference for
more than one type of relative state, then the same node may
be known by graph state variables of different types. For
example, a node representing a spacecraft’s gyroscope may
be used in both a rotation graph state variable and a
communications connectivity graph state variable.

The rover arm example in section 3 can be described in
terms of a 6 degree of freedom (6 DOF) graph state variable.
Each of its direct relationships is a 6 DOF transformation. A
6 DOF transformation contains both a translation, a rotation,
and their derivatives. Three degrees are the x, y, and z
coordinates of its location. The other three represent the
rotation as a unit vector and the rotation angle about it. A
6DOF relationship in the GSV represents a combined
relative location and orientation state that has direction and
uncertainty, and is transitive and invertible. Each node in
this GSV is a 6 DOF reference point for its object, where the
object is a rigid body. 6 DOF reference points are called
frames. Each has a coordinate frame with:

(1) The coordinate frame’s origin fixed to a location for its

frame’s object, and
(2) The coordinate frame’s axes fixed within the frame’s

object.

A 6 DOF GSV for the rover arm example knows about
nodes for the end effector frame (D), the forearm frame (C),
the upper arm frame (B), the rover body frame (A), and the
rock frame (E). These frames can be seen as nodes in figure
5. The relationship d is the 6DOF transformation from the
end effector frame (D) to the rock frame (E). Similar
relationships exist from frame A to frame B (denoted RAB),
as well as RBC , RCD , and RAE. If two of the nodes’
coordinate frames are in alignment, for example the Mars
landing site and the rock, then the 6 DOF direct relationship
between them would be a translation with a null rotation.

1

1

*

**

estimates

relationship

*

*

uses

uses

uses

0..1

0..1

0..1

proxy
1

*

*

1

1
1

relationship
* *

evaluates

0..1

*
*

eval
uates

0..1

evaluates0..1

{xor}

*

*
*

*

*

Node
new

Proxy Graph State
Variable

new

Basis Graph
State Variable

newEstimator

Dependencies
State Variable

Derivation
new

Derived State
Variable

Proxy State
Variable

*

*

Derived Graph
State Variable

new*

estimates

relationship

**
Basis State

Variable

*

Figure 4. Unified Modeling Language (UML) representation of graph state variable architectural elements (green) in
the context of other MDS architectural elements (blue).

Each GSV direct relationship/edge may be explicitly
represented in the software as its own state variable. On the
other hand, some direct relationships/edges may be may be
represented in a more implicit fashion. For example, each
may be computed from a different element in the same state
variable. This case is discussed further in the derived
relationships section below.

Derived Relationships

A graph state variable computes the relative state between
any two of its nodes. The nodes may be non-adjacent; they
may not have a direct relationship between them. A GSV
can derive a relative state’s value for non-adjacent nodes in
the GSV by concatenating the direct relationships along a
path between the two nodes. A path within a graph state
variable is a sequence of nodes, where adjacent nodes in the
sequence must have an edge between them in the graph, and
no two adjacent pairs of nodes can be repeated. GSVs
require that a relative state relationship type be invertible
and transitive. For a relationship type to be invertible, a
value of this type for the relationship from node A to node B
implies that a relationship value from node B to node A can
be computed. Note that an inverted relationship value is
allowed to be “unknown” (i.e. having and uncertainty of 1)
and still be defined. For a relationship type to be transitive,
instances of it concatenated together must also be an
instance of the relationship type. For example, if a direct
relationship instance RAB exists from (A) to (B), and if
another RBC exists from (B) to (C), and both are instances of
a transitive relationship, then a derived relationship instance
RAC exists for the relationship from (A) to (C). A derived
relationship is computed using a concatenation operator (•)
defined for each relationship type. Thus RAC = RAB • RBC,
where RAC is of the same type as RAB and RAC.

In the rover arm example above, the relationship type, a 6
DOF transformation, is invertible and transitive. The
relative state for the end effector’s (D) position and
orientation with respect to the rock (E) can be a derived

relationship. Its derivation is the concatenation, and
inversion where needed, of the direct relationships RCD, RBC,
RAB, and RAE. More explicitly, a derivation for RDE is (RCD)-1

• (RBC)-1

 • (RAB)-1
 • RAE .

Note that a direct relationship may itself be a derived state
variable. In a new graph state variable example, a rover’s
traversability relationship between locations on a map may
be computed from a sequence of moves within a grid. Each
move has a traversability relationship. The traversability for
any particular move may be computed from an NxN
elevation map state that is estimated from camera
observations. It would make no sense to pre-compute the
traversability relationship of each possible move. The
number of direct traversability relationships would be very
large. Further, many are in the wrong direction or may be
eventually discounted as being too difficult to cross. One
approach is to compute traversability relationships only as
needed by accessing a derived state variable that computes
the traversability between two adjacent locations in the
elevation map. In this case, a GSV may represent direct
relationships as queries on the derived state, rather than by
storing each direct relationship within the GSV.

Alternative Derivations

A graph state variable can select between alternative
derivation paths. A graph can have loops that produce
multiple paths between two nodes. This creates the
possibility of two or more potentially different relationships
between two nodes (given that the information in the GSV
is never perfect). This is useful when there needs to be more
than one possible way to derive a relative state. In this case,
an application includes a path arbitration criterion that the
graph state variable uses to select between possible
derivations. If the user needs only “reasonable” derivations,
the adapter can provide a pass/fail criteria. In this case, the
graph state variable will only return derivations that pass the
criteria. If a user needs only the n “best” derivations, then
the adapter can provide a utility function that the GSV uses
to return the n derivations that have highest value.

The rover arm example above has two possible derivation
paths for the distance, d, between the end effector (D) and
the rock (E): D->E and D->C->B->A->E. The GSV should
return the distance directly sensed by a proximity sensor on
the end effector (D->E) when it is close to the rock. In this
case the discriminating factor may be the derivation’s
uncertainty. The directly sensed distance may have a much
smaller uncertainty that the indirect longer derivation when
the end effector is close to the rock. The utility function
would simply return the certainty for each derivation passed
to it. The GSV would choose one derivation (i.e. n=1) that
has the best value (e.g. greatest certainty).

A

B C

D

Elanding
site

Earth

Sun

Mars

antenna

d

PGSV1

BGSV2

BGSV3

BGSV4

Figure 5. Rover arm example graph state variable.

Graph state variables also allow for the use of both a utility
function and a pass/fail criteria together. In this way an
adapter can have the GSV return the n best derivations that
satisfy a pass/fail criteria.

Basis and Proxy Graph State Variables

A GSV is composed of a collection of nodes and the direct
relationships that connect them. Each direct relationship is
stored in a state variable. GSVs whose direct relationships
are basis or derived state variables are called basis graph
state variables (BGSVs). Each basis graph state variable
contains direct relationships that are estimated in the local
deployment by the same estimator. The proxy pattern for
state variables is repeated here for GSVs. A proxy graph
state variable (PGSV) is composed of direct relationships
that are estimated in a separate deployment by the same
estimator. Each direct relationship referenced in a proxy
GSV is stored in a proxy state variable. In a sense, a proxy
GSV is a mirror of a basis GSV.

In the rover arm example discussed earlier, basis graph state
variable BGSV2 contains rover estimates of the 6 DOF
relationship between its location (A) and the landing site.
BGSV2 also contains estimates of the location of the rock
(E) relative to the location of the rover (A). Similarly, the
rover estimates the 6DOF relationships for its articulated
antenna and upper arm (B) relative to the location and
coordinate frame of the rover body (A) and stores the
estimates in BGSV4. The 6DOF transformations between
the rover arm elements are also estimated by the rover and
stored in BGSV4. All transformations for the articulated
elements are stored in the same BGSV because they are
correlated and estimated by the same estimator. Correlated
relationships will be discussed further in the dependencies
section below. The rover’s estimate of the rock’s (E) 6 DOF
relationship relative to the end effector (D) using the
proximity sensor is stored in BGSV3. What remains are the
relationships that are estimated on the ground and copied
into the proxy graph state variable PGSV1. These
relationships include orbits for the Earth and Mars relative
to the Sun, and the location of the landing site on Mars
relative to the Mars frame.

Composite Graph State Variables

A GSV may be composed of other GSVs. Such a GSV is
called a composite graph state variable (CGSV). A CGSV
can derive new relationships from the relationships that are
in its various constituent GSVs. Common nodes that appear
in more than one of the constituent GSVs provide the bridge
that links them together. This allows relationship derivation
paths to extend over different GSVs. A composite GSV can
link sets of direct relationships that are estimated in both
local (Basis GSVs) and remote (Proxy GSVs) deployments
using this mechanism. Further, a composite GSV allows for
a hierarchical organization of sets of relationships. A
composite GSV is not limited to be composed of BGSVs or
PGSVs. It may have as constituents other composite GSVs.

A hierarchy of collections of relationships can be created,
by having CGSVs, within CGSVs, within CGSVs, etc.

The rover arm example above has a single composite graph
state variable named the Frame Composite GSV. It is
composed of 4 constituent GSVs: PGSV1, BGSV2,
BGSV3, BGSV4. The landing site node links the proxy
graph state variable for ground estimated navigation 6DOF
states (PGSV1) and the rover estimated navigation 6DOF
states (BGSV2). The rover body node (A) links the rover
estimated navigation states with the 6DOF relationships
between the articulated elements (BGSV4). Finally, BGSV3
is a bit of a special case. It contains the directly measured
relationship between the end effector (D) and the rock (E).
Thus, it provides two links which allow comparison of the
estimate of the rock’s location (E) using navigation and
vision algorithms (BGSV2) and rover arm kinematics
(BGSV4) with the directly measured relationship (BGSV3).

Dependencies

GSVs use dependencies to compute the uncertainties of
derived relationships. Dependencies represent correlations
of knowledge between the direct relationships in a graph
state variable. Dependencies are stored or derived in a state
variable referenced by its GSV.

For example, suppose two direct relationships in a GSV are
A and B, where each has an uncertainty that is represented
as a normal distribution with variances σA

2 and σB
2,

respectively. Then the dependency in the GSV may be the
covariance of A and B, denoted as cov(A,B). If the derived
relationship A•B is computed using subtraction then A•B =
A-B and the GSV computes the uncertainty of A•B as
σA

2+σB
2-2cov(A,B). Other types of dependencies are

possible, depending on the nature of the relationships.

The rover arm example above contains 3 direct relationships
in BGSV4 that represent relative locations and orientations
of the rover body, upper arm, forearm, and end effector.
Suppose each direct relationship is estimated using
measurements from different potentiometers, each of which
measures a particular joint angle. If the same A-to-D
converter digitizes the voltages from all potentiometers,
then a bias in the A-to-D converter affects all conversions.
Thus, each estimate of a rover arm direct relationship is
offset by the same bias and is correlated with the other rover
arm direct relationships. In this case, the dependency state
variable contains the correlations needed to compute the
uncertainties of the derived relationship D->A.

Dynamic Topology

Some missions need to add relationships and nodes as new
objects of interest in the environment are identified.
Examples include science targets identified by a rover along
the surface of Mars, opportunistic spacecraft observations
during flybys, and asteroids added for optical navigation
purposes. Once these targets have been observed, they may
no longer be relevant to a spacecraft’s future operations. In

these cases their relationships and nodes should be deleted.
In some cases, the set of direct relationships changes
without adding new nodes. For example, spacecraft position
may be estimated with respect to the Earth immediately
after launch. Later during interplanetary cruise, it is
estimated with respect to the Sun (or the Solar System
Barycenter). Finally, it may be estimated with respect to a
planetary body for an upcoming flyby or orbit insertion.
These planetary objects are typically identified and tracked
prior to launch; however, a new direct relationship to
represent trajectory may need to be established when a
spacecraft comes under the gravitational influence of a
nearby planetary object.

These examples demonstrate there is need for graph state
variables to accommodate the addition and removal of
relative states and reference points. To meet these
necessities, graph state variables include methods for adding
and deleting nodes and direct relationships. The underlying
MDS component software architecture provides for adding
and connecting to a GSV new state variables that
correspond to new direct relationships. It also allows for
disconnecting and removing state variables. GSV path
arbitration criteria that favor certain derived relationships
will guide the use of a new direct relationship rather than
less desirable derivations.

Points of Reference

Each node in a GSV may be used as a point of reference by
other states. For example, the direction of a camera
boresight and the force direction of a thruster are states that
need to be defined in terms of a coordinate frame point of
reference. 6 DOF graph state variables that have frame
nodes for the instrument and the thruster provide frames of
reference for their directions. A 6 DOF GSV may be used to

rotate the camera’s boresight direction into the correct frame
for comparison against the Sun’s direction. Hazard
avoidance algorithms may use this to prevent pointing the
camera into the Sun. Similarly, a 6 DOF GSV may be used
to rotate the thruster’s force direction into the same frame as
the spacecraft center of mass for computing imparted
torques. In general, 6 DOF GSVs provide a mechanism to
relate vectors (and tensors for moments of inertia) that are
defined in terms of different frames of reference.

Performance

The search for a path between two nodes may be too slow
for applications containing large graphs or high rate
derivations. Graph state variables have a number of features
that allow an adapter to reduce the time for deriving a
relationship.

Cached Paths—Graph state variables provide a capability
for returning derived relationships in a small amount of time
for frequently repeated queries. If a repeated derivation is
along the same path, an application may save the path
returned by a query. A saved path is called a derivation. A
derivation may be re-evaluated in subsequent relationship
queries to avoid the overhead of searching the graph.
Derivations may be automatically invalidated and a new
path computed when a direct relationship along the path
changes or a change in the graph’s topology warrants it. A
graph state variable may also keep relationship data about
“now” more quickly accessible that data for other, less
frequently requested times.

Domain Specific Search Algorithms—In addition to
providing generic search algorithms for finding paths, graph
state variables allow an application to specify its own search
algorithm. This enables an application to use knowledge of
its domain to improve its graph search performance.

Mars
Rotation

Re-Target Location Offset

Mars Surface
Fixed Frame

initial landing site

Spacecraft
Basebody

Frame
Re-Target Frame
for hazard avoidance

Landing
Location and
Local Vertical

Orientation

Spacecraft
Attitude and

Location

NOT TO SCALE

Mars-Centered
Mars-Fixed

Frame

Mars-
Centered
Inertial
Frame

Figure 6. 6 degree of freedom navigation frames and relationships for a Mars lander prototype.

Search Algorithm Hints—Graph state variables provide a
capability that allows an adapter to provide search hints. A
hint can be specified in a relationship query and used by the
search algorithm to direct searches. A hint may take a
variety of forms. For example, the search algorithm may
interpret a path arbitration criterion as a search hint.

Another may be a partial path screening criterion. A GSV
may use it to eliminate candidate partial paths during each
step of its graph search algorithm. A partial path screening
criterion is like a pass/fail path arbitration criteria and it
applies to partial paths. Many possible criteria are possible.
Examples are functions of the path’s nodes, direct
relationships, or the relationship the partial path represents.

Another type of hint is a partial path prioritization function.
The search algorithm uses it to select the next path explored
during each step of a graph search algorithm. A partial path
prioritization function is like a path arbitration criteria utility
function except it applies to partial paths.

 6. MARS EDL EXAMPLE
6DOF navigation relationships in a Mars entry, descent, and
landing GSV prototype adaptation is depicted in figure 6.

The spacecraft attitude and location is a relative state that
represents the translation and rotation of the spacecraft
basebody frame with respect to the Mars-centered inertial
frame. The Mars-centered Mars-fixed frame is a rotating
frame with respect to the Mars-centered inertial frame. The
Mars surface fixed frame is the initially targeted landing site
and is related to the Mars-centered Mars-fixed frame by a
location offset from the center of Mars, and by a rotation
that has the Z-axis vertical and X and Y axes along Mars
longitude and latitude lines, respectively. The re-target
frame is a location offset from the Mars surface fixed frame
used if a hazard is detected during landing.

In addition to these navigation frames, there are frames to
represent locations and orientations for the following
spacecraft elements:

 the location of the spacecraft center of mass,
 the location of spacecraft roll thrusters,
 the location of descent engines, and
 the location and orientation of an ideal sensor that

measures the spacecraft location and orientation.

(A true flight application would contain separate frames for

6 Degree of Freedom Composite GSV for EDL Prototype

Descent Engine
Frames (5:8)

(4 engine force direction vectors defined in
terms of each engine's frame)

Roll Thruster Frames (1:4)
(4 thruster force direction vectors defined

in terms of each thruster's frame)

Each node is a frame, representing a position and a coordinate system.
Each relationship is a 6 degree of freedom transformation stored in a state variable,

6 DOF element values are zeros/identity matrix for pure rotations/translations.

MCI to SC
Rot and Tran SV

Spacecraft
Basebody

Frame

Mars-Centered
Mars-Fixed Frame

MCI to MCMF
Rot SV

MCMF to MSF
Rot and Tran SV

(constant)

(constant)

Mars Surface
Fixed Frame

(fixed initial landing site)

(constant)

(updated by
6 DOF

estimator)

(Mars spin
function)

(constant)

MSF to RTF
Tran SV

Re-Target Frame
(optionally commanded new

landing site(s))

(contiguous
constant

function(s))

Ideal 6 DOF Device Frame

(constant identity
transformation)

Example usage:
Torquei =
 [COM to RTi X
 Thruster Force Unit Vectori]
 * Thrust Level

Device Frame BGSV

Center of Mass
Frame BGSV

Spacecraft
Frame BGSV

Mars
Frame BGSV

Retarget
Frame BGSV

Center of Mass Frame
(spacecraft moments of

inertia defined in terms of
Center of Mass Frame)

Mars-
Centered
Inertial
Frame

SC to COM
Tran SV

SC to I6DD
Rot and Tran SV

4x SC to DEi
Tran SV

4x SC to RTi
Tran SV

Figure 7. Graph state variables for a Mars lander prototype.

rotation measurement devices (e.g. gyroscopes),
accelerometers, a star tracker, radar and lidar. These have
been abstracted for the purposes of the prototype and will be
added in future versions.) The spacecraft center of mass
frame relative to the spacecraft basebody is a location offset
represented as a 6 DOF relationship with a null rotation.
Similarly, the thruster and descent engine frames are defined
in terms of relative states that are only translations with
respect to the spacecraft basebody frame. Finally, the ideal
sensor is just a stand in for more realistic sensors, so its
frame’s relationship with the spacecraft basebody frame is a
constant identity transformation (null rotation and
translation).

All frames and relationships are collected into 5 basis state
variables within the frame composite graph state variable
shown in figure 7. Each of the relationships is stored in a
basis state variable. The thruster, descent engine, and ideal
sensor frames and their relationships are gathered into the
same basis GSV because these represent calibration
parameters for device alignments. Such parameters are
typically estimated on the ground and uplinked together to
the spacecraft. Thus, they are collected into the same GSV.
If they were actually uplinked from the ground, these
relationships would be stored in proxy state variables and
collected into the same proxy GSV. The center of mass
offset from the origin of the spacecraft basebody frame
would be estimated from fuel depletion in its own estimator
and is, therefore, in its own basis GSV. The center of mass
offset would be derived from two component state
variables: one a static uplinked parameter based on the
spacecraft dry mass, and the other derived onboard from a
propellant state variable. The spacecraft attitude and
position 6 DOF relationship (MCI to SC) is in its own basis
GSV because it is estimated by the spacecraft in a separate
6DOF estimator. The relationships between the Mars
inertial and fixed frames are in the same basis graph state
variable because they would be estimated on the ground by
the navigators. Again, in a real application, these would also
be proxies. The re-target frame position offset is within its
own basis GSV because a separate onboard algorithm for
hazard avoidance will eventually estimate it using radar and
lidar measurements.

Thruster and descent engine force direction states are
defined as unit vectors in terms of reference points for their
individual frames. The torque for roll thruster “i” is
computed by the following formula:

Torquei =
[COM to RTi X Thrusteri Force Direction] * Thrust Leveli

COM to RTi is the derived location relationship along the
path from the Center of Mass Frame, to the Spacecraft
Basebody frame, and then to the frame for Roll Thruster i.
Thrusteri Force Direction has been rotated into the Center of
Mass Frame using the inverse of the derived 6 DOF
transformation along the same path.

The descent engine torques are computed in the same
fashion. The spacecraft moment of inertia is another state
that is defined in terms of a frame reference point. In this
case it is the center of mass frame. This along with the state
for the spacecraft mass defines the spacecraft inertial
properties.

The spacecraft position and orientation controllers control
the relationship of the spacecraft basebody frame w.r.t. the
re-target frame. Given an orientation and position profile
goal, they compute the thrust levels using the previously
described torque and inertial properties models and
transformations in the 6 DOF composite GSV.

 7. SYSTEMS ENGINEERING OF RELATIVE STATES
MDS state analysis is a model-based process to aid systems
and software engineering. State analysis prompts systems
engineers to perform a methodical discovery process and
rigorous analysis of mission requirements in terms of MDS
architectural elements. These architectural elements have a
one-to-one correspondence to specific MDS software
frameworks that need to be adapted by software engineers to
meet the requirements in the state analysis. In this way, the
software implementation has a much better chance of
meeting mission requirements.

Graph state variables extend MDS state analysis to provide
both a systems engineering methodology for explicitly
describing required relative states and an unambiguous way
for transforming the requirements into elements to be
adapted in the software architecture. The GSV extensions to
state analysis are described below.

The system engineer determines the set of relative states
required to meet mission requirements. The system engineer
identifies the types of relationships that model the relative
states required. MDS plans to develop relationship types for
relative states that are common to space applications. If,
however, a required relationship type is not already
provided by MDS, the systems engineer determines the
mathematical form for describing the relationship. In
addition, he determines the formulas for inverting and
concatenating relationships. These will be used in the
adaptation of the MDS provided graph state variable
framework to compute derived relationships. The software
engineer creates a relationship software type that meets the
relationship’s mathematical properties and implements the
invert and concatenation operators.

The system engineer identifies the points of reference
(nodes) for each of the relative states required to be
modeled. The system engineer identifies the direct
relationships required to represent basis relative states, and
the derived relationships that use them required for
representing derived relative states. The system engineer
determines for each direct relationship whether it will be
represented explicitly between pairs of reference points as
individual states. If there are many possible direct

relationships, he may determine an algorithm for deriving
them from a composite state. In this case, the software
engineer codes the algorithm used by the GSV for deriving
direct relationships. If the direct relationships will be
represented as individual states, the software engineer
identifies each state. The software engineer instantiates each
of these as a basis (or derived) state variable in the
deployment (spacecraft and/or ground) that estimates (or
derives) it. The system engineer identifies the basis state
variables that are needed as direct relationships in other
deployments, and the software engineer instantiates each as
a proxy state variable in each deployment that needs it.

For each estimator in a deployment, the system engineer
groups the direct relationships that are estimated by it, and
the nodes the direct relationships share into a basis graph
state variable for that deployment. Similarly, the system
engineer groups the direct relationships stored in proxy state
variables within the same deployment and the nodes they
share into proxy graph state variables for that deployment.
The software engineer creates software instances of these
basis and proxy graph state variables within the
deployments they belong. Finally, the software engineer
builds a composite GSV in each deployment from the basis
and proxy GSVs of the same relationship type.

 8. CONCLUSIONS
The MDS architecture and graph state variables are a
foundation for spacecraft software that can meet the
ambitious autonomy challenges of future space exploration
missions. Graph state variables meet key MDS architectural
themes to explicitly model states and join attitude control,
navigation, and robotics. They provide a common reusable
framework that will allow easy management of attitude
control, navigation, and robotics interactions and provide for
shared systematically engineered data. Graph state variable
six degree of freedom relationships provide a common
mathematical base for representing relative states for
spacecraft orientation, location, trajectories, dynamics, and
kinematics. In addition, because graph state variables have
been designed in an adaptable abstract model, they can be
adapted for the power, telecommunications, and networking
domains, and possibly others. Graph state variables provide
a common framework for unambiguously and
systematically describing system engineering requirements
on relative states and a process for implementing them
reliably in software.

In summary, graph state variables:

(1) explicitly represent relative states as relationships

between reference points,
(2) explicitly model the composition of derived relative

states from elemental relative states,
(3) combine multiple sets of relative states (sub-graphs)

estimated separately or copied from remote locations,
(4) produce different results for different derivation paths

and select between them,

(5) accommodate graph topology changes - addition or
deletion of reference points and relative states,

(6) represent dependencies between relative states
 (e.g. correlations).

 9. ACKNOWLEDGEMENTS
The research and design described in this paper was carried
out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics
and Space Administration.

The authors thank the entire MDS team at JPL for their
contributions, without which this work could not have been
done. We are especially appreciative of the following MDS
team members for invaluable graph state variable discussions:
Daniel Dvorak, Sandy Krasner, Michael Lisano, Steve
Peters, Zahidul Rahman, Nicolas Rouquette, and Marcel
Schoppers.

 REFERENCES
[1] D. Dvorak, R. Rasmussen, G. Reeves, A. Sacks; “Software
Architecture Themes in JPL’s Mission Data System,” 2000 IEEE
Aerospace Conference Proceedings, March 2000.

[2] D. Dvorak, R. Rasmussen, T. Starbird; “State Knowledge
Representation in the Mission Data System,” 2002 IEEE
Aerospace Conference Proceedings, March 2002.

[3] R. Rasmussen, G Singh, D. Rathburn, G. Macala;
“Behavioral Model Pointing on Cassini Using Target Vectors,”
18th Annual AAS Rocky Mountain Guidance and Control
Conference, February 1995.

Matthew Bennett is a senior
engineer in the Avionics Systems
Engineering section of the Jet
Propulsion Laboratory, California
Institute of Technology. He has
interests in spacecraft autonomy
and has broad experience in
spacecraft development, test, and
operations, including the Galileo
Jupiter and Cassini Saturn orbiter
missions. He has developed
mission software for fault protection, guidance and control,
science data collection, performance analysis, and
simulation. He holds an MS from the University of
Washington in Computer Science, and a BS from the
University of California at San Diego in Computer
Engineering.

Robert Rasmussen is a principal
engineer in the Information Tech-
nologies and Software Systems
division of the Jet Propulsion
Laboratory, California Institute of
Technology, where he is the
Division Technologist and the
Mission Data System architect. He
holds a BS, MS, and Ph.D. in
Electrical Engineering from Iowa
State University. He has extensive experience in spacecraft
attitude control and computer systems, test and flight
operations, and automation and autonomy — particularly in
the area of spacecraft fault tolerance. Most recently, he was
cognizant engineer for the Attitude and Articulation Control
Subsystem on the Cassini mission to Saturn.

